A Novel Competition between $\mathrm{C}-\mathrm{Se}$ and $\mathrm{C}-\mathrm{Si}$ Cleavages in Cyclization of β-Seleno- β-silyl-substituted Divinyl Ketones

Shoko Yamazaki, * Wataru Mizuno and Shinichi Yamabe
Department of Chemistry, Nara University of Education, Takabatake-cho, Nara 630, Japan

Reactions of β-seleno- β-silyl-substituted divinyl ketones 2-4 with Lewis acids at room temp. gave phenylseleno and/or trimethylsilyl functionalized cyclopentenones. The use of TiCl_{4} or SnCl_{4} results in C -Se cleavage leading to 5 -(phenylseleno)-3-(trimethylsilyl)cyclopent-2-enones 9-11 as major products. In contrast, using $\mathrm{AgBF}_{4}-\mathrm{TMSCl}$ (trimethylsilyl chloride) results in $\mathrm{C}-\mathrm{Si}$ cleavage to give 3-(phenylseleno)cyclopenten-2-ones 12-14. Lewis acid-dependent competitive cleavage between $\mathrm{C}-\mathrm{Se}$ and $\mathrm{C}-\mathrm{Si}$ bonds has been demonstrated.

Compounds containing selenium and silicon bonded to the same carbon are of synthetic and mechanistic interest. Selective transformations of β-hydroxy α-silyl selenides to vinyl selenides under basic conditions ($\mathrm{Bu}^{t} \mathrm{OK}$) and to vinylsilanes by treatment with a hydroxy activating reagent $\left(\mathrm{POCl}_{3}-\mathrm{NEt}_{3}\right)$ have been reported. ${ }^{1}$. In reactions of a carbonium ion 1 , there are two possible pathways, i.e. $\mathrm{C}-\mathrm{Se}$ and $\mathrm{C}-\mathrm{Si}$ cleavages (Scheme 1). It

is well known that a silyl group is usually lost from a β-silyl cation, ${ }^{2}$ and this property has been utilized in the silicondirected Nazarov cyclization. ${ }^{3}$ On the other hand, recently we reported that a β-seleno-substituted divinyl ketone underwent cyclization accompanied by selenophenyl migration in the presence of a Lewis acid. ${ }^{4}$ Magnus has reported that Nazarov cyclization of β, β-silylthio divinyl ketones, presumed as intermediates, gave thioaryl substituted cyclopentenones, accompanied by loss of the TMS (trimethylsilyl) group. ${ }^{5}$ Clearly, $\mathrm{C}-$ Si cleavage predominated over $\mathrm{C}-\mathrm{S}$ cleavage. Since a $\mathrm{C}-\mathrm{Se}$ bond is weaker than a $\mathrm{C}-\mathrm{S}$ bond, cleavage of $\mathrm{C}-\mathrm{Se}$ and $\mathrm{C}-\mathrm{Si}$ bonds can potentially be competitive. It is of interest to examine selective cleavage of $\mathrm{C}-\mathrm{Se}$ (via path \mathbf{x}) or $\mathrm{C}-\mathrm{Si}$ bonds (via path \mathbf{y}) under various conditions (Scheme 2).

In this work, we focus our attention on the possibility of

[^0]selective formation of 3-(phenylseleno)- or 5-(phenylseleno)-3-(trimethylsilyl)-cyclopent-2-enones, i.e. can Lewis acids be used to control $\mathrm{C}-\mathrm{Se}$ or $\mathrm{C}-\mathrm{Si}$ cleavage?

We report that Friedel-Crafts acylation of 1-(phenylseleno)1 -(trimethylsilyl)ethene 8^{6} gave β-seleno- β-silyl-substituted divinyl ketones 2-4. The isolation of such type precursors for the Nazarov cyclization ${ }^{7}$ has not yet been reported. It is also shown that the cyclization of 2-4 afforded phenylseleno and/or trimethylsilyl functionalized cyclopentenones in processes that could be affected by appropriate choice of Lewis acid.

Synthesis of β-Seleno- β-silyl Divinyl Ketones.- β-Seleno- β silyl divinyl ketones 2-4 were synthesized and isolated as follows. Treatment of 1-(phenylseleno)-1-(trimethylsilyl)ethene 8 with α, β-unsaturated acid chlorides 5-7 in the presence of TiCl_{4} in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $-78^{\circ} \mathrm{C}$ for 3 h , gave the divinyl ketones 2-4 (33-96\% yields; Scheme 3) in two isomeric forms a and \mathbf{b}. These were readily separated by chromatography, but in CDCl_{3} solution they isomerized slowly at room temp. \dagger Spectral data failed to allow unequivocal E or Z assignments to the isomers 2-4 a and b.

In the first step of Scheme 3, the nucleophilic olefin 8 adds to acylium ion to give a carbonium ion stabilized by the PhSe group. Loss of a proton leads to the divinyl ketones $2-4$. A similar pathway has been suggested for the reaction of 1-(phenylthio)-1-(trimethylsilyl)ethene 24 and acid chlorides in the presence of Lewis acids. ${ }^{5}$ Through the present isolation of precursors 2-4, the addition-deprotonation scheme has now been established.

Nazarov Cyclization of β-Seleno- β-silyl Divinyl Ketones 2-4.Lewis acid: TiCl_{4} or SnCl_{4}. A reaction mixture containing pure 2a or 2b, and TiCl_{4} in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $-78^{\circ} \mathrm{C}$ when allowed to warm to room temp. gave 1 -(phenylseleno)-4-(trimethylsilyl)bicyclo-[3.30]oct-3-en-2-one $9 \ddagger$ as the major product in 67 and 57.4%

cyclic
2; $R^{1}, R^{2}=\left(\mathrm{CH}_{2}\right)_{3}$
3; $R^{1}, R^{2}=\left(\mathrm{CH}_{2}\right)_{4}$
acyclic
4; $R^{1}=H, R^{2}=M e$

Scheme 2

Table 1 Isolated yield of reactions of 2-4 with Lewis acids in Scheme $4^{\text {a.b,c }}$

Starting material	Lewis acid		Products (\%)			
2a	TiCl_{4}	9 (67)	12 (0)	15 (1.4)		
2b	TiCl_{4}	9 (57.4)	12 (0)	15 (0)		
2a	SnCl_{4}	9 (72)	12 (6)	15 (0.9)		
2b	SnCl_{4}	9 (57)	12 (0)	15 (0)		
2a	$\mathrm{AgBF}_{4}{ }^{\text {d }}$	9 (0)	12 (35)	15 (0)		
2b	$\mathrm{AgBF}_{4}{ }^{e}$	9 (0)	12 (0)	15 (0)		
2b	$\mathrm{AgBF}_{4}-\mathrm{TMSCl}$	9 (0)	12 (52)	15 (0)		
$\mathbf{2 a}: \mathbf{2 b}=2: 1$	TMSCl^{f}	9 (0)	12 (0)	15 (0)		
3a	TiCl_{4}	Complex mixture Complex mixture				
3b	TiCl_{4}					
3a	SnCl_{4}	10 (38)	13 (0)			
3b	SnCl_{4}	10 (50)	13 (0)			
3a	$\mathrm{AgBF}_{4}-\mathrm{TMSCl}^{9}$	10 (0)	13 (56)			
3b	$\mathrm{AgBF}_{4}-\mathrm{TMSCl}^{h}$	10 (0)	$13 \text { (25) }$			
3b	$\mathrm{AgOSO}_{2} \mathrm{CF}_{3}$	10 (0)	13 (47)			
4a	TiCl_{4}	11 (31)	14 (11.6)	16 (4.8)	17 (7.6)	18 (0)
4b	TiCl_{4}	11 (55)	14 (3.7)	16 (9.7)	17 (0)	18 (0)
4a	SnCl_{4}	11 (35)	14 (13)	16 (9)	17 (0)	18 (9.5)
4b	SnCl_{4}	11 (29)	14 (6)	16 (15)	17 (0)	18 (0)
4a	$\mathrm{AgBF}_{4}-\mathrm{TMSCl}^{i}$	11 (0)	14 (35)	16 (0)	17 (0)	18 (0)
4b	$\mathrm{AgBF}_{4}-\mathrm{TMSCl}^{j}$	11 (0)	14 (26)	16 (0)	17 (0)	18 (0)

${ }^{a}$ The product ratios of isolated products are the same as those from the crude ${ }^{1} \mathrm{H}$ NMR spectra within experimental errors. ${ }^{b}$ The bicyclo compounds $9,10,12,13$ and 15 are single diastereoisomers by NMR spectroscopy, and assigned to cis ring junction stereochemistry on the basis of thermodynamic expectation. ${ }^{c}$ The compounds 11 and 17 are single diastereoisomers and assigned to trans stereochemistry for 4,5 -substituents. ${ }^{d} \mathbf{2 b}$
 (37%) was recovered.
isolated yields, respectively. Pure 3a or pure 3b when treated with TiCl_{4} in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ under the same condition gave a complex mixture. Pure $\mathbf{4 a}$ or pure $\mathbf{4 b}$ when treated with TiCl_{4} in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $-78{ }^{\circ} \mathrm{C}$ to room temp. gave 4 -methyl-5-(phenylseleno)-3-(trimethylsilyl)cyclopent-2-enone $\mathbf{1 1}$ as the major product in 31 and 55% yields, respectively. Warming of 2-4 in the presence of SnCl_{4} from $-78{ }^{\circ} \mathrm{C}$ to room temperature gave compounds 9 , 10 and 11 as the main products in $29-72 \%$ yields (Scheme 4 and Table 1).

Lewis acid: AgBF_{4} and/or TMSCl or $\mathrm{AgOSO}_{2} \mathrm{CF}_{3}$. Treatment of 2 a in the presence of AgBF_{4} in $\mathrm{CH}_{2} \mathrm{ClCH}_{2} \mathrm{Cl}-$ $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $-50^{\circ} \mathrm{C}$ to room temp. gave 4 -(phenylseleno) bi-cyclo[3.3.0]oct-3-en-2-one $\mathbf{1 2}(35 \%)$ and $\mathbf{2 b}(45 \%)$; $\mathbf{2 b}$ remained unchanged upon treatment with AgBF_{4}. When ca. 1 equiv. of chlorotrimethylsilane (TMSCl) was added to AgBF_{4} as an activating reagent, $\mathbf{2 b}$ afforded $\mathbf{1 2}$ in 52% yield. Treatment of $\mathbf{3}$ and 4 in the presence of $\mathrm{AgBF}_{4}-\mathrm{TMSCl}$ at room temperature gave 3 -(phenylseleno)cyclopent-2-enones 13 and 14, respectively. The cyclized products $\mathbf{1 2 - 1 4}$ with the SePh group are of the same type as the sulphur analogues, which were reported by

[^1]

23

Scheme 3

Magnus. ${ }^{5}$ Compounds 3a and 4a produced the isomers 3b (13%) and $\mathbf{4 b}(26 \%)$, respectively, in addition to the cyclized products $13(56 \%)$ and $14(35 \%)$ in the presence of $\mathrm{AgBF}_{4}{ }^{-}$ TMSCl. Reaction of a $2: 1$ mixture of $\mathbf{2 a}$ and $\mathbf{2 b}$ with TMSCl in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ gave no cyclized products. Reaction of 3b with $\mathrm{AgOSO}_{2} \mathrm{CF}_{3}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ gave 13 (47%) (Scheme 4 and Table 1). In all cases, the pure geometrical isomers \mathbf{a} and \mathbf{b} of the starting divinyl ketones gave similar cyclization product ratios.*

The mechanism of cyclopentenone annulation is shown in Scheme 5. The divinyl ketone affords pentadienyl cation 19 in the presence of Lewis acid. Next, cyclization of 19 to an oxyallyl cation 20 occurs. ${ }^{7}$ The complex of AgBF_{4} and TMSCl, $\mathrm{TMS}^{\delta+}$ $-\mathrm{Cl}^{8-} \cdots \mathrm{Ag}^{+} \cdots \mathrm{BF}_{4}^{-}$, may coordinate to the carbonyl

2a, b; $\mathrm{R}^{1}, \mathrm{R}^{2}=\left(\mathrm{CH}_{2}\right)_{3}$
3a, b; $\mathrm{R}^{1}, \mathrm{R}^{2}=\left(\mathrm{CH}_{2}\right)_{4}$
$4 a, b ; R^{1}=H, R^{2}=M e$
MX (Lewis acid)
$\stackrel{\text { Lewis acid) }}{-70^{\circ} \mathrm{C} \rightarrow \text { room ımp. }}$

Scheme 4
oxygen more strongly than AgBF_{4} or TMSCl alone and facilitate cyclization. By the use of TiCl_{4} or SnCl_{4} (path \mathbf{x}), $\mathbf{2 0}$ loses the SePh group to give the diene 21 mainly. The latter is converted into 9-11 by phenylselenenylation with the PhSe^{+} generated in situ. The minor products, 15 and 16 in Scheme 4, were formed by either protonation of 21, or reduction of 9 and 11, respectively. With $\mathrm{AgBF}_{4}-\mathrm{TMSCl}, 20$ loses the SiMe_{3} group instead of the SePh group to give the diene 22 (path \mathbf{y}). The latter is converted into $12-14$ by protonation.

In summary, β-seleno- β-silyl-substituted divinyl ketones 2-4 in the presence of Lewis acids at room temp. give phenylseleno and/or trimethylsilyl functionalized cyclopentenones. Using TiCl_{4} or SnCl_{4} afforded 5-(phenylseleno)-3-(trimethylsilyl)-cyclopent-2-enones 9-11 as major products. In this case, $\mathrm{C}-\mathrm{Se}$ cleavage predominated over $\mathrm{C}-\mathrm{Si}$ cleavage during cyclization, which has not been observed for sulphur derivatives ${ }^{5}$ probably due to the large $\mathrm{C}-\mathrm{S}$ bond energy, $269 \mathrm{~kJ} / \mathrm{mol}$ ($\mathrm{C}-\mathrm{Se}$ bond energy, $251 \mathrm{~kJ} / \mathrm{mol}$). On the other hand, using $\mathrm{AgBF}_{4}-\mathrm{TMSCl}$ results in C -Si cleavage to give 3-(phenylseleno)cyclopent-2enones 12-14 (Scheme 4). Thus, the predominant leaving group depends on the nature of Lewis acids, and unprecedented fine tuning of $\mathrm{C}-\mathrm{Se}$ and $\mathrm{C}-\mathrm{Si}$ bond cleavages has been observed.

Experimental

General Methods.-M.p.s are uncorrected. IR spectra were recorded with a JASCO FT-IR 5000 spectrophotometer. NMR spectra were recorded in CDCl_{3} on a JEOL FX-200 spectrometer. For the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ spectra, $\mathrm{Me}_{4} \mathrm{Si}$ was used as an internal reference. J Values are given in Hz . For ${ }^{77} \mathrm{Se}$ Spectra, $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{Se}$ was used as an external reference. Mass spectra were determined on a JEOL JMS-01SG-2 spectrometer and UV-VIS spectra were measured with a Hitachi 100-50 spectrometer. All reactions were carried out under a nitrogen atmosphere.

1-Phenylseleno-1-trimethylsilylethene 8.-Compound 8 was prepared from vinyl selenide according to the literature ${ }^{6}$ or by the following procedure: a flask was charged with magnesium turnings ($670 \mathrm{mg}, 27.7 \mathrm{mmol}$) and THF ($7.28 \mathrm{~cm}^{3}$); 1,2-dibromoethane (145.6 mg) was added. Then, a solution of 1-(bromovinyl)trimethylsilane ($3.3 \mathrm{~g}, 18.4 \mathrm{mmol}$) in THF (5.45 cm^{3}) was added dropwise to the stirred mixture at a rate that maintained gentle reflux. After the addition was completed, the reaction mixture was kept at reflux for an additional hour. Then a solution of PhSeBr [made by the addition of $\mathrm{Br}_{2}\left(0.52 \mathrm{~cm}^{3}\right.$, $10.2 \mathrm{mmol})$ to a solution of diphenyl diselenide $(3.18 \mathrm{~g}, 10.2$

Scheme 5
mmol) in THF ($25.5 \mathrm{~cm}^{3}$)] was added dropwise. After being refluxed for an additional hour, the reaction mixture was cooled, diluted with ether, and hydrolysed by addition of saturated aqueous ammonium chloride. The mixture was extracted with ether. The extracts were washed with water, dried (MgSO_{4}) and concentrated. Column chromatography (silica gel; hexane) of the residue gave the title compound $8^{6}(2.54 \mathrm{~g}$, $54 \%)\left(R_{\mathrm{f}}=0.5\right)$, as a colourless oil: $\delta_{\mathrm{H}}\left(200 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 0.17$ $\left(9 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}_{3}\right), 5.68(1 \mathrm{H}, \mathrm{s}, 2-\mathrm{H}), 6.05(1 \mathrm{H}, \mathrm{s}, 2-\mathrm{H}), 7.26-7.34$ (3 $\mathrm{H}, \mathrm{m}, \mathrm{Ph})$ and $7.52-7.58(2 \mathrm{H}, \mathrm{m}, \mathrm{Ph})$.

Acid Chlorides 5-7.-Compounds 5 and 6 were prepared by literature methods. ${ }^{5,7 f}$ Compound 7 was commercially available (Nacalai Tesque).

Preparation of Divinyl Ketones 2-4.-A typical experimental procedure is described for the preparation of 1-(cyclopent-1'-enyl)-3-(phenylseleno)-3-(trimethylsilyl)prop-2-en-1-one 2. To
a solution of $\mathrm{TiCl}_{4}(216 \mathrm{mg}, 1.14 \mathrm{mmol})$ in dry dichloromethane ($1.71 \mathrm{~cm}^{3}$), cooled to $-78{ }^{\circ} \mathrm{C}$, was added compound 8 (227.2 $\mathrm{mg}, 0.89 \mathrm{mmol})$, followed by compound $5(148.6 \mathrm{mg}, 1.14 \mathrm{mmol})$ via a syringe. The mixture was stirred at $-78^{\circ} \mathrm{C}$ for 3 h . The reaction mixture was diluted with water and extracted with dichloromethane. The organic phases were washed with saturated aqueous NaHCO_{3} and water, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and evaporated under reduced pressure. The residue was purified by flash column chromatography over silica gel eluting with hexane$\mathrm{CHCl}_{3}(1: 1)$ to give $\mathbf{2 a}(147 \mathrm{mg}, 47 \%)\left(R_{\mathrm{f}}=0.3\right)$ and 2b (152 $\mathrm{mg}, 49 \%)\left(R_{\mathrm{f}}=0.2\right)$.
2a: pale yellow oil; $v_{\max }($ neat $) / \mathrm{cm}^{-1} 2956,1634$ (CO), 1578, 1246 and $845 ; \lambda_{\max }(\mathrm{MeOH}) / \mathrm{nm} 289(\log \varepsilon 3.16)$ and 345 (3.96); $\delta_{\mathrm{H}}\left(200 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 0.34\left(9 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}_{3}\right), 1.72-1.88\left(2 \mathrm{H}, \mathrm{m}, 4^{\prime}-\right.$ H), 2.36-2.48 ($\left.4 \mathrm{H}, \mathrm{m}, 3^{\prime}, 5^{\prime}-\mathrm{H}\right), 6.14-6.18$ ($\left.1 \mathrm{H}, \mathrm{m}, 2^{\prime}-\mathrm{H}\right), 6.74$ (1 $\mathrm{H}, \mathrm{s}, 2-\mathrm{H})$, 7.44-7.48 (3 H, m, Ph) and 7.56-7.62 ($2 \mathrm{H}, \mathrm{m}, \mathrm{Ph}$); $\delta_{\mathrm{c}}\left(50.1 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)-0.391\left(\mathrm{SiMe}_{3}\right), 22.70,30.88,34.12$, 127.6, 129.4, 129.9, 130.4, 137.1, 142.7, 146.6, 165.2 and 184.5 (C1); ${ }^{7} \mathrm{Se}$ NMR $\left[\mathrm{CDCl}_{3}\right.$, relative to $\left.\left(\mathrm{CH}_{3}\right)_{2} \mathrm{Se}\right] 490.6 \mathrm{ppm} ; m / z$ $350\left(\mathrm{M}^{+}, 31 \%\right), 335(100), 255(83), 95$ (100) and 73 (100); (Found: $\mathrm{M}^{+}, 350.0603$. Calc. for $\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{OSeSi}: M, 350.0605$).
2b: yellow crystals; m.p. $85-87^{\circ} \mathrm{C}$ (from hexane) (Found: C, $58.0 ; \mathrm{H}, 6.35 . \mathrm{C}_{17} \mathrm{H}_{22} \mathrm{OSeSi}$ requires $\mathrm{C}, 58.44 ; \mathrm{H}, 6.35 \%$); $v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 2954,1619(\mathrm{CO}), 1503,1246,945$ and 841 ; $\lambda_{\text {max }}(\mathrm{MeOH}) / \mathrm{nm} 286(\log \varepsilon 3.30)$ and 349 (4.21); $\delta_{\mathrm{H}}(200$ $\left.\mathrm{MHz} ; \mathrm{CDCl}_{3}\right)-0.046\left(9 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}_{3}\right), 1.88-2.04\left(2 \mathrm{H}, \mathrm{m}, 4^{\prime}-\mathrm{H}\right)$, 2.53-2.73 ($\left.4 \mathrm{H}, \mathrm{m}, 3^{\prime}, 5^{\prime}-\mathrm{H}\right), 6.76-6.81\left(1 \mathrm{H}, \mathrm{m}, 2^{\prime}-\mathrm{H}\right), 7.30-7.38$ ($3 \mathrm{H}, \mathrm{m}, \mathrm{Ph}$), $7.52(1 \mathrm{H}, \mathrm{s}, 2-\mathrm{H})$ and $7.70-7.75(2 \mathrm{H}, \mathrm{m}, \mathrm{Ph})$; $\delta_{\mathrm{C}}\left(50.1 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.04\left(\mathrm{SiMe}_{3}\right), 22.94,31.08,34.21$, $128.75,128.69,129.0,130.4,137.8,142.4,146.8,165.1$ and 187.0 (C-1); ${ }^{77} \mathrm{Se}$ NMR $\left[\mathrm{CDCl}_{3}\right.$, relative to $\left.\left(\mathrm{CH}_{3}\right)_{2} \mathrm{Se}\right] 583.1 \mathrm{ppm} ; \mathrm{m} / \mathrm{z}$ $350\left(\mathrm{M}^{+}, 44 \%\right), 335$ (100), 255 (57), 95 (100) and 73 (88); (Found: $\mathrm{M}^{+}, 350.0602$. Calc. for $\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{OSeSi}: M, 350.0604$).

1-(Cyclohex-1'-enyl)-3-(phenylseleno)-3-(trimethylsily) prop-2-en-1-one 3. 3a (30.3%) $R_{\mathrm{f}_{\mathrm{f}}}=0.3$ (hexane- $\mathrm{CHCl}_{3}=1: 1$)]; pale yellow oil; $v_{\max }($ neat $) / \mathrm{cm}^{-1} 1634(\mathrm{CO}), 1526,1244$ and 1212; $\delta_{\mathrm{H}}\left(200 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 0.314\left(9 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}_{3}\right), 1.47-1.61(4 \mathrm{H}, \mathrm{m}$, $\left.4^{\prime}, 5^{\prime}-\mathrm{H}\right), 2.08-2.14\left(4 \mathrm{H}, \mathrm{m}, 3^{\prime}, 6^{\prime}-\mathrm{H}\right), 6.37-6.41\left(1 \mathrm{H}, \mathrm{m}, 2^{\prime}-\mathrm{H}\right), 6.74$ ($1 \mathrm{H}, \mathrm{s}, 2-\mathrm{H}), 7.41-7.44(3 \mathrm{H}, \mathrm{m}, \mathrm{Ph})$ and $7.56-7.61(2 \mathrm{H}, \mathrm{m}, \mathrm{Ph})$; $\delta_{\mathrm{C}}\left(50.1 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)-0.274\left(\mathrm{SiMe}_{3}\right), 21.51,22.00,23.43,26.15$, 127.7, 129.3, 129.8, 130.2, 137.0, 139.4, 139.9, 163.8 and 188.2 (C1); $m / z 364$ ($\mathrm{M}^{+}, 14 \%$), 349 (100), 269 (29), 207 (32) and 73 (38) (Found: M^{+}364.0789. Calc. for $\mathrm{C}_{18} \mathrm{H}_{24}$ OSeSi: $M, 364.0762$).

Compound 3b (17.3%) $R_{\mathrm{f}}=0.2$ (hexane- $\mathrm{CHCl}_{3}=1: 1$)]; yellow crystals; m.p. $64-67^{\circ} \mathrm{C}$ (from hexane) (Found: C, 59.5; $\mathrm{H}, \quad 6.6 . \mathrm{C}_{18} \mathrm{H}_{24} \mathrm{OSeSi}$ requires $\mathrm{C}, 59.49 ; \mathrm{H}, 6.66 \%$); $v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 1634(\mathrm{CO}), 1607,1509$ and 1217; $\delta_{\mathrm{H}}(200 \mathrm{MHz}$; $\left.\mathrm{CDCl}_{3}\right)-0.044\left(9 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}_{3}\right), 1.64-1.69\left(4 \mathrm{H}, \mathrm{m}, 4^{\prime}, 5^{\prime}-\mathrm{H}\right), 2.27-$ $2.36\left(4 \mathrm{H}, \mathrm{m}, 3^{\prime}, 6^{\prime}-\mathrm{H}\right), 6.92-6.96\left(1 \mathrm{H}, \mathrm{m}, 2^{\prime}-\mathrm{H}\right), 7.24-7.37(3 \mathrm{H}$, $\mathrm{m}, \mathrm{Ph}), 7.51(1 \mathrm{H}, \mathrm{s}, 2-\mathrm{H})$ and $7.68-7.73(2 \mathrm{H}, \mathrm{m}, \mathrm{Ph}) ; \delta_{\mathrm{C}}(50.1$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) 0.951\left(\mathrm{SiMe}_{3}\right), 21.65,22.09,34.21,23.43,26.24$, 128.6, 128.8, 130.6, 137.5, 139.3, 140.1, 163.59 and 190.19 (C-1); $m / z 364\left(\mathrm{M}^{+}, 10 \%\right), 349$ (32) and 109 (100).
(4E)-1-Phenylseleno-1-trimethylsilylhexa-1,4-dien-3-one 4. 4a $(17 \%) \quad\left[R_{\mathrm{f}}=0.3\right.$ (hexane- $\left.\left.\mathrm{CHCl}_{3}=1: 1\right)\right]$; pale yellow oil; $v_{\text {max }}($ neat $) / \mathrm{cm}^{-1} 1669(\mathrm{CO}), 1653,1624$ and $1522 ; \delta_{\mathrm{H}}(200 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) 0.33\left(9 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}_{3}\right) 1.78\left(3 \mathrm{H}, \mathrm{dd}, J_{4.6} 1.47, J_{5,6} 6.82,6-\mathrm{H}\right)$, $5.94\left(1 \mathrm{H}, \mathrm{qd}, J_{4,6} 1.47, J_{4,5} 15.7,4-\mathrm{H}\right), 6.44(1 \mathrm{H}, \mathrm{s}, 2-\mathrm{H}), 6.60(1 \mathrm{H}$, qd, $\left.J_{5,6} 6.82, J_{4,5} 15.7,5-\mathrm{H}\right), 7.43-7.45(3 \mathrm{H}, \mathrm{m}, \mathrm{Ph})$ and $7.56-7.60$ ($2 \mathrm{H}, \mathrm{m}, \mathrm{Ph}$); $\delta_{\mathrm{c}}\left(50.1 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)-0.391\left(\mathrm{SiMe}_{3}\right), 18.41(\mathrm{C}-6)$, $127.5,129.4,130.0,131.7,132.4,137.0,142.5,167.3$ and 185.4 (C3); $m / z 324\left(\mathrm{M}^{+}, 22 \%\right), 309(86), 229$ (77) and 73 (100) (Found: $\mathrm{M}^{+}, \mathbf{3 2 4 . 0 4 4 9}$. Calc. for $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{OSeSi}: M, 324.0448$).

Compound 4b (16%) $\left[R_{\mathrm{f}}=0.2\right.$ (hexane- $\mathrm{CHCl}_{3}=1: 1$)]; yellow crystals; m.p. $42-44^{\circ} \mathrm{C}$ (from hexane) (Found: C, $55.8 ; \mathrm{H}$, 6.2. $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{OSeSi}$ requires $\mathrm{C}, 55.72 ; \mathrm{H}, 6.23 \%$); $v_{\text {max }}($ neat $) / \mathrm{cm}^{-1}$

1653 (CO), 1609 and $1495 ; \delta_{\mathrm{H}}\left(200 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)-0.053$ $\left(9 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}_{3}\right) 1.93\left(3 \mathrm{H}, \mathrm{dd}, J_{4.6} 1.5, J_{5.6} 7.0,6-\mathrm{H}\right), 6.32(1 \mathrm{H}, \mathrm{qd}$, $\left.J_{4.6} 1.5, J_{4.5} 15.1,4-\mathrm{H}\right), 6.98\left(1 \mathrm{H}, \mathrm{qd}, J_{5,6} 7.0, J_{4,5} 15.1,5-\mathrm{H}\right)$, $7.19(1 \mathrm{H}, \mathrm{s}, 2-\mathrm{H}), 7.26-7.38(3 \mathrm{H}, \mathrm{m}, \mathrm{Ph})$ and $7.70-7.75(2 \mathrm{H}, \mathrm{m}$, $\mathrm{Ph}) ; \delta_{\mathrm{C}}\left(50.1 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.039\left(\mathrm{SiMe}_{3}\right), 18.53(\mathrm{C}-6), 128.7$, 129.1, 130.0, 130.4, 132.0, 137.8, 142.8, 167.2 and $187.5(\mathrm{C}-3) ; m / z$ $324\left(\mathrm{M}^{+}, 15 \%\right), 309(38)$ and 229 (38) (Found: $\mathrm{M}^{+}, 324.0455$. Calc. for $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{OSeSi}: M, 324.0449$).

Reaction of 2-4 with TiCl_{4}.-A typical experimental procedure is described for the reaction of $\mathbf{2 a}$. To a solution of $\mathbf{2 a}$ $(24.9 \mathrm{mg}, 0.0713 \mathrm{mmol})$ in dichloromethane $\left(0.283 \mathrm{~cm}^{3}\right)$ was added $\mathrm{TiCl}_{4}(21.5 \mathrm{mg}, 0.114 \mathrm{mmol})$ in dichloromethane $(0.283$ cm^{3}) dropwise at $-78^{\circ} \mathrm{C}$. After 30 min at $-78^{\circ} \mathrm{C}$, the mixture was allowed to warm to room temp. and was stirred for 2 h . The reaction mixture was diluted with water and extracted with dichloromethane and the organic phases were washed with saturated aqueous NaHCO_{3} and water, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated under reduced pressure. The residue was purified by TLC [silica gel; hexane-ether ($2: 1$)] to give 9 ($16.6 \mathrm{mg}, 67 \%$) ($\left.R_{\mathrm{f}}=0.5\right)$ and $15(0.2 \mathrm{mg}, 1.4 \%)\left(R_{\mathrm{f}}=0.4\right)$.

1-(Phenylseleno)-4-(trimethylsily)bicyclo[3.3.0]oct-3-en-2one 9 was a pale yellow oil (Found: C, 58.45 ; H, 6.45. $\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{OSeSi}$ requires C, $\left.58.44 ; \mathrm{H}, 6.35 \%\right) ; v_{\text {max }}($ neat $) / \mathrm{cm}^{-1}$ $2958,1702(\mathrm{CO}), 1250$ and $843 ; \delta_{\mathrm{H}}\left(200 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 0.066(9 \mathrm{H}$, s, SiMe_{3}), $1.17-2.18(6 \mathrm{H}, \mathrm{m}, 6,7,8-\mathrm{H}), 3.40(1 \mathrm{H}, \mathrm{bd}, J 9.8,5-\mathrm{H})$, $6.13(1 \mathrm{H}, \mathrm{d}, J 1.47,3-\mathrm{H}), 7.20-7.36(3 \mathrm{H}, \mathrm{m}, \mathrm{Ph})$ and $7.55-7.59$ $(2 \mathrm{H}, \mathrm{m}, \mathrm{Ph}) ; \delta_{\mathrm{C}}\left(50.1 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)-1.676\left(\mathrm{SiMe}_{3}\right), 25.24$, $30.00,36.43,58.53,58.71,127.0,128.8,129.0,137.2,140.5,183.9$ and $209.8(\mathrm{C}-2) ;{ }^{77} \mathrm{Se}$ NMR $\left[\mathrm{CDCl}_{3}\right.$, relative to $\left.\left(\mathrm{CH}_{3}\right)_{2} \mathrm{Se}\right]$ $487.8 \mathrm{ppm} ; \mathrm{m} / \mathrm{z} 350\left(\mathrm{M}^{+}, 66 \%\right), 348$ (34), 193 (63) and 73 (100) (Found: $\mathrm{M}^{+}, 350.0622$. Calc. for $\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{OSeSi}: M, 350.0605$). ${ }^{1} \mathrm{H}$ NMR results for 15 were identical with those of 15 which was obtained by a one-pot cyclization of 8 and 5 (vide post).
Reaction of $\mathbf{2 b}(27 \mathrm{mg})$ with TiCl_{4} gave $9(15.5 \mathrm{mg}, 57.4 \%)$.
Reaction of $3 \mathbf{a}(27 \mathrm{mg})$ with TiCl_{4} gave a complex mixture. The mixture was not purified.
Reaction of $\mathbf{3 b}$ (33 mg) with TiCl_{4} gave a complex mixture. The mixture was not purified.

Reaction of $\mathbf{4 a}(20 \mathrm{mg})$ with TiCl_{4} gave $11(6.1 \mathrm{mg}, 31 \%)$, $16(0.5 \mathrm{mg}, 4.8 \%), 17(1.9 \mathrm{mg}, 7.6 \%)$ and 14 ($1.8 \mathrm{mg}, 11.6 \%$). 4-Methyl-5-(phenylseleno)-3-(trimethylsilyl)cyclopent-2-enone 11 [$R_{\mathrm{f}}=0.5$ (hexane-ether $=2: 1$)]: pale yellow oil; $v_{\max }($ neat $) / \mathrm{cm}^{-1} 2962,1700(\mathrm{CO}), 1251$ and $841 ; \delta_{\mathrm{H}}(200 \mathrm{MHz}$; $\left.\mathrm{CDCl}_{3}\right) 0.105\left(9 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}_{3}\right), 1.21\left(1 \mathrm{H}, \mathrm{d}, J_{4,4-\mathrm{Me}} 7.2,4-\mathrm{Me}\right)$, $3.04\left(1 \mathrm{H}, \mathrm{ddq}, J_{2.4} 1.7, J_{4.5} 2.0, J_{4.4-\mathrm{Mc}} 7.2,4-\mathrm{H}\right), 3.27(1 \mathrm{H}, \mathrm{d}$, $\left.J_{4.5} 2.0,5-\mathrm{H}\right), 6.20\left(1 \mathrm{H}, \mathrm{d}, J_{2.4} 1.7,2-\mathrm{H}\right), 7.25-7.29(3 \mathrm{H}, \mathrm{m}, \mathrm{Ph})$ and $7.56-7.61(2 \mathrm{H}, \mathrm{m}, \mathrm{Ph}) ; \delta_{\mathrm{C}}\left(50.1 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)-1.588$ (SiMe_{3}), 20.08, 48.84, 50.21, 127.1, 128.6, 129.1, 136.0, 140.0, 186.8 and $206.0(\mathrm{C}-1) ; m / z 324\left(\mathrm{M}^{+}, 92 \%\right), 243(52), 167(72), 157$ (100) and 73 (100) (Found: $\mathrm{M}^{+}, 324.0411$. Calc. for $\mathrm{C}_{15^{-}}$ $\mathrm{H}_{20} \mathrm{OSeSi}: M, 324.0448$).
$16\left(R_{\mathrm{f}}=0.4\right.$ [hexane-ether $\left.=2 / 1\right)$]: ${ }^{1} \mathrm{H}$ NMR results for 16 were identical with those of 16 which was obtained by one-pot cyclization of $\mathbf{8}$ and 7 (vide post).

3,5-Bis(phenylseleno)-4-methylcyclopent-2-enone 17 [$R_{\mathrm{f}}=$ 0.3 hexane-ether $=2: 1$]: pale yellow oil; $v_{\max }($ neat $) / \mathrm{cm}^{-1}$ $1687(\mathrm{CO}), 1549,1250$ and $738 ; \delta_{\mathrm{H}}\left(200 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.27(3 \mathrm{H}$, d, $\left.J_{4.4-\mathrm{Mc}} 7.2,4-\mathrm{Me}\right), 3.17\left(1 \mathrm{H}, \mathrm{ddq}, J_{2.4} 1.2, J_{4.5} 2.4, J_{4.4-\mathrm{Mc}} 7.2\right.$, $4-\mathrm{H}), 3.51\left(1 \mathrm{H}, \mathrm{d}, J_{4.5} 2.4,5-\mathrm{H}\right), 5.59\left(1 \mathrm{H}, \mathrm{d}, J_{2,4} 1.2,2-\mathrm{H}\right), 7.24$ $7.48(8 \mathrm{H}, \mathrm{m}, \mathrm{Ph})$ and $7.59-7.64(2 \mathrm{H}, \mathrm{m}, \mathrm{Ph}) ; \delta_{\mathrm{C}}(50.1 \mathrm{MHz}$; CDCl_{3}) 20.14, 48.95, 52.08, 125.5, 127.0, 128.3, 128.6, 129.2, $129.8,130.0,135.9,136.1,184.2$ and $200.5(\mathrm{C}-1) ; m / z 408\left(\mathrm{M}^{+}\right.$, 11%), 406 (10), 327 (17), 251 (31) and 157 (100) (Found: M^{+}, 407.9541. Calc. for $\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{O}^{80} \mathrm{Se}_{2}: ~ M, 407.9532$ and 405.9564. Calc. for $\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{O}^{78} \mathrm{Se}{ }^{80} \mathrm{Se}: M, 405.9539$).
4-Methyl-3-(phenylseleno)cyclopent-2-enone $14 \quad\left[R_{\mathrm{f}}=0.3\right.$ (hexane-ether $=2: 1$)]: pale yellow oil; $v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1}$
$1676(\mathrm{CO}), 1549$ and $1263 ; \delta_{\mathrm{H}}\left(200 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.33(3 \mathrm{H}, \mathrm{d}$, $\left.J_{4.4-\mathrm{Me}} 7.3,4-\mathrm{Me}\right), 2.14\left(1 \mathrm{H}, \mathrm{dd}, J_{4,5} 2.4, J_{5,5} 18,3,5-\mathrm{H}\right), 2.75(1$ H , dd, $\left.J_{4.5} 6.8, J_{5.5} 18.3,5-\mathrm{H}\right), 3.12-3.27(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H})$ and 5.64 $\left(1 \mathrm{H}, \mathrm{d}, J_{2.4} 1.2,2-\mathrm{H}\right) ; \delta_{\mathrm{C}}\left(50.1 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 21.14\left(\mathrm{CH}_{3}, 4-\right.$ $\mathrm{Me}), 39.65(\mathrm{CH}, \mathrm{C}-4), 45.26\left(\mathrm{CH}_{2}, \mathrm{C}-5\right), 125.8(\mathrm{C}), 129.4(\mathrm{CH})$, $129.7(\mathrm{CH}), 130.0(\mathrm{CH}), 136.1(\mathrm{CH}), 186.1(\mathrm{C})$ and $203.9(\mathrm{C}$, $\mathrm{C}-1) ; m / z 252\left(\mathrm{M}^{+}, 100 \%\right), 95(99)$ and 67 (95) (Found: M^{+}, 252.0053. Calc. for $\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{OSe} M, 252.0053$).

Reaction of $\mathbf{4 b}$ with TiCl_{4} gave $11(55 \%), 16(9.7 \%)$ and 14 (3.7\%).

Reaction of 2-4 with SnCl_{4}.-A typical experimental procedure is described for the reaction of $\mathbf{2 a}$. To a solution of $\mathbf{2 a}$ $(19 \mathrm{mg}, 0.0544 \mathrm{mmol})$ in dichloromethane $\left(0.216 \mathrm{~cm}^{3}\right)$ was added $\mathrm{SnCl}_{4}(22.7 \mathrm{mg}, 0.0872 \mathrm{mmol})$ in dichloromethane $(0.216$ cm^{3}) dropwise at $-78^{\circ} \mathrm{C}$. After 1 h at $-78^{\circ} \mathrm{C}$, the mixture was allowed to warm to room temp. and stirred for 2 h . The reaction mixture was diluted with water and extracted with dichloromethane and the organic phases were washed with saturated aqueous NaHCO_{3} and water, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated under reduced pressure. The residue was purified by TLC [silica gel; hexane-ether $2: 1)$] to give $9(13.7 \mathrm{mg}, 72 \%$) ($\left.R_{\mathrm{f}}=0.5\right), 15(0.1 \mathrm{mg}, 0.9 \%)\left(R_{\mathrm{f}}=0.4\right)$ and $12(0.9 \mathrm{mg}, 6 \%)$ ($R_{\mathrm{f}}=0.2$).

4-(Phenylseleno)bicyclo[3.3.0] oct-3-en-2-one 12: pale yellow oil; $v_{\max }($ neat $) / \mathrm{cm}^{-1} 2956,1694$ (CO), 1549, 1264, 1244, 742 and $690 ; \delta_{\mathrm{H}}\left(200 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.26-1.44(1 \mathrm{H}, \mathrm{m}), 1.59-1.96$ ($5 \mathrm{H}, \mathrm{m}$), 2.83-2.92 ($1 \mathrm{H}, \mathrm{m}, 1-\mathrm{H}$), 3.47 (1 H , t-like, $J 7.2,5-\mathrm{H}$), $5.70(1 \mathrm{H}, \mathrm{s}, 3-\mathrm{H}), 7.38-7.44(3 \mathrm{H}, \mathrm{m}, \mathrm{Ph})$ and $7.59-7.64(2 \mathrm{H}, \mathrm{m}$, $\mathrm{Ph}) ; \delta_{\mathrm{C}}\left(50.1 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 24.13,29.24,31.14,50.30,52.87$, 126.0, 129.7, 130.0, 130.4, 136.3, 183.7 and 207.4 (C-2); $m / z 278$ $\left(\mathrm{M}^{+}, 74 \%\right), 276(41), 121(100), 93(70)$ and $77(74)$ (Found: M^{+}, 278.0207. Calc. for $\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{O}^{80} \mathrm{Se}: M, 278.0210$; and M^{+}, 276.0214. Calc. for $\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{O}^{78} \mathrm{Se} M, 276.0218$).

Reaction of $\mathbf{2 b}(27.6 \mathrm{mg})$ with SnCl_{4} gave $9(15.7 \mathrm{mg}, 57 \%)$.
Reaction of 3a (34 mg) with SnCl_{4} gave $10(12.8 \mathrm{mg}, 38 \%)$. 6-(Phenylseleno)-9-(trimethylsilyl)bicyclo[4.3.0]non-8-en-7one $10 \quad\left[R_{\mathrm{f}}=0.6\right.$ (hexane-ether $=2 / 1$)] pale yellow oil; $v_{\text {max }}($ neat $) / \mathrm{cm}^{-1} 3058,2940,1700(\mathrm{CO}), 1250$ and $841 ; \delta_{\mathrm{H}}(200$ $\left.\mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 0.097\left(9 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}_{3}\right), 0.956-1.28(2 \mathrm{H}, \mathrm{m}), 1.40-$ $3.08(6 \mathrm{H}, \mathrm{m}), 3.04\left(1 \mathrm{H}, \mathrm{dd}, J_{1.2} 6.2,8.2,1-\mathrm{H}\right), 7.23-7.41(3 \mathrm{H}, \mathrm{m}$, $\mathrm{Ph})$ and $7.51-7.55(2 \mathrm{H}, \mathrm{m}, \mathrm{Ph}) ; \delta_{\mathrm{C}}\left(50.1 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)-1.705$ $\left(\mathrm{SiMe}_{3}\right), 20.75,21.30,29.24,29.83,52.46,55.20,127.3,128.8$, $129.3,138.0,139.1,183.1$ and 207.2 (C-7); $m / z 364\left(\mathrm{M}^{+}, 16 \%\right)$, 207 (27), 157 (100) and 73 (100) (Found: $\mathrm{M}^{+}, 364.0768$. Calc. for $\mathrm{C}_{18} \mathrm{H}_{24} \mathrm{OSe}: M, 364.0761$).

Reaction of 3b (29.1 mg) with SnCl_{4} gave $10(14.6 \mathrm{mg}, 50 \%)$.
Reaction of $\mathbf{4 a}(23 \mathrm{mg})$ with SnCl_{4} gave $11(8.1 \mathrm{mg}, 35 \%), \mathbf{1 6}$ $(1.1 \mathrm{mg}, 9 \%), \mathbf{1 4}(2.4 \mathrm{mg}, 13 \%)$ and $\mathbf{1 8}(1.7 \mathrm{mg}, 9.5 \%) .3$-Methyl-4-(phenylseleno)cyclopent-2-en-1-one $18\left[R_{\mathrm{f}}=0.1\right.$ (hexaneether $=2: 1)]$: pale yellow oil; $v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 1709(\mathrm{CO})$, 1682 and $1613 ; \delta_{\mathrm{H}}\left(200 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 2.27(3 \mathrm{H}, \mathrm{bs}, 3-\mathrm{Me})$, $2.60\left(1 \mathrm{H}, \mathrm{d}, J_{5,5} 18.8,5-\mathrm{H}\right), 2.93\left(1 \mathrm{H}, \mathrm{dd}, J_{4,5} 6.8, J_{5,5} 18.8,5-\mathrm{H}\right)$, $4.20\left(1 \mathrm{H}, \mathrm{d}, J_{4,5} 6.8,4-\mathrm{H}\right), 5.90(1 \mathrm{H}, \mathrm{bs}, 2-\mathrm{H}), 7.23-7.35(3 \mathrm{H}, \mathrm{m}$, $\mathrm{Ph})$ and $7.43-7.50(2 \mathrm{H}, \mathrm{m}, \mathrm{Ph}) ; \delta_{\mathrm{C}}\left(50.1 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 18.35$, $44.52,44.84,126.6,129.0,129.4,131.9,136.0,177.0$ and 206.2 (C-1); $m / z 252\left(\mathrm{M}^{+}, 86 \%\right), 250(43), 157$ (19) and 95 (100) (Found: $\mathrm{M}^{+}, 252.0031$. Calc. for $\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{OSe}: M, 252.0054$).

Reaction of $\mathbf{2 a}$ with AgBF_{4}.- To a solution of $\mathrm{AgBF}_{4}(18 \mathrm{mg}$, 0.0925 mmol) in dry 1,2 -dichloroethane $\left(0.3 \mathrm{~cm}^{3}\right)$ and dichloromethane $\left(0.1 \mathrm{~cm}^{3}\right)$, cooled to $-50^{\circ} \mathrm{C}$, was added $\mathbf{2 a}$ ($20 \mathrm{mg}, 0.0572 \mathrm{mmol}$) in dichloromethane $\left(0.1 \mathrm{~cm}^{3}\right)$. After 30 \min at -50 C , the mixture was allowed to warm to room temp. and then stirred for 22 h . The mixture was extracted with dichloromethane and the organic phases were washed with saturated aqueous NaHCO_{3} and water, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated under reduced pressure. The residue was purified by
chromatography on silica gel eluting with hexane- CHCl_{3} to give 2b ($9 \mathrm{mg}, 45 \%$) and $12(5.5 \mathrm{mg}, 35 \%)$.

Reaction of $2-4$ with $\mathrm{AgBF}_{4}-\mathrm{TMSCl}$ - A typical experimental procedure was described for the reaction of 3a. To a solution of $\mathrm{AgBF}_{4}(25.7 \mathrm{mg}, 0.132 \mathrm{mmol})$ in dry $1,2-$ dichloroethane ($0.94 \mathrm{~cm}^{3}$) and dichloromethane $\left(0.21 \mathrm{~cm}^{3}\right)$, cooled to $-50^{\circ} \mathrm{C}$, was added 3a ($30 \mathrm{mg}, 0.0825 \mathrm{mmol}$) in dichloromethane $\left(0.42 \mathrm{~cm}^{3}\right)$, followed by chlorotrimethylsilane ($10.4 \mathrm{mg}, 0.096 \mathrm{mmol}$). After 30 min at $-50^{\circ} \mathrm{C}$, the mixture was allowed to warm to room temp. and stirred overnight. The mixture was extracted with dichloromethane and the organic phases were washed with saturated aqueous NaHCO_{3} and water, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated under reduced pressure. The residue was purified by chromatography on silica gel eluting with hexane-ether (2:1) to give 3b ($3.8 \mathrm{mg}, 13 \%$) ($R_{\mathrm{f}}=0.8$) and $13(13.4 \mathrm{mg}, 56 \%)\left(R_{\mathrm{f}}=0.2\right)$.

9-(Phenylseleno)bicyclo[4.3.0]non-8-en-7-one $\mathbf{1 3}$ was a colourless oil (Found: C, 61.95; H, 5.75. $\mathrm{C}_{15} \mathrm{H}_{16}$ OSe requires $\mathrm{C}, 61.86$; $\mathrm{H}, 5.54 \%$); $v_{\text {max }}$ (neat) $/ \mathrm{cm}^{-1} 2934,2858,1694$ (CO), 1547, 1439, $1256,1163,742$ and $692 ; \delta_{\mathrm{H}}\left(200 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.24-1.76(6 \mathrm{H}$, $\mathrm{m}), 1.88-2.12(2 \mathrm{H}, \mathrm{m}), 2.58(1 \mathrm{H}$, ddd, $J 6.5,6.8$ and $11.6,6-\mathrm{H})$, $3.12(1 \mathrm{H}, \mathrm{dd}, J 6.8$ and $7.0,1-\mathrm{H}), 5.68(1 \mathrm{H}, \mathrm{d}, J 0.8,8-\mathrm{H}), 7.34-$ $7.48(3 \mathrm{H}, \mathrm{m}, \mathrm{Ph})$ and $7.56-7.66(2 \mathrm{H}, \mathrm{m}, \mathrm{Ph}) ; \delta_{\mathrm{C}}(50.1 \mathrm{MHz}$; $\left.\mathrm{CDCl}_{3}\right) 21.33\left(\mathrm{CH}_{2}\right), 21.33\left(\mathrm{CH}_{2}\right), 22.73\left(\mathrm{CH}_{2}\right), 30.03\left(\mathrm{CH}_{2}\right)$, $44.57(\mathrm{CH}), 47.96(\mathrm{CH}), 125.7(\mathrm{C}), 127.6(\mathrm{CH}), 129.6(\mathrm{CH}), 130.0$ $(\mathrm{CH}), 136.1(\mathrm{CH}), 183.9(\mathrm{C})$ and $206.2(\mathrm{C}, \mathrm{C}-7) ; m / z 292\left(\mathrm{M}^{+}\right.$, 100%), 290 (50), 157 (58), 135 (68), 107 (58), 91 (57) and 79 (93) (Found: $\mathrm{M}^{+}, 292.0319$. Calc. for $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{OSe}: M, 292.0367$).

Reaction of $\mathbf{2 b}(20.8 \mathrm{mg})$ with $\mathrm{AgBF}_{4}-\mathrm{TMSCl}$ gave 12 (8.5 $\mathrm{mg}, 52 \%$).

Reaction of $\mathbf{3 b}$ (30.7 mg) with $\mathrm{AgBF}_{4}-\mathrm{TMSCl}$ gave 13 (6.2 $\mathrm{mg}, 25 \%$) and recovered $\mathbf{3 b}(14.5 \mathrm{mg}, 47 \%$).

Reaction of $\mathbf{4 a}\left(25 \mathrm{mg}\right.$) with $\mathrm{AgBF}_{4}-\mathrm{TMSCl}$ gave $14(6.7 \mathrm{mg}$, 35%) and 4 b ($6.6 \mathrm{mg}, 26 \%$).

Reaction of $\mathbf{4 b}(23 \mathrm{mg})$ with $\mathrm{AgBF}_{4}-\mathrm{TMSCl}$ gave 14 (4.6 mg , 26%) and recovered $3 \mathrm{~b}(8.5 \mathrm{mg}, 37 \%)$.

Reaction of $\mathbf{3 b}$ with $\mathrm{AgOSO}_{2} \mathrm{CF}_{3}$.-To a solution of $\mathbf{3 b}$ (4.0 $\mathrm{mg}, 0.011 \mathrm{mmol}$) in dry dichloromethane $\left(0.1 \mathrm{~cm}^{3}\right)$ was added $\mathrm{AgOSO}_{2} \mathrm{CF}_{3}(9.0 \mathrm{mg}, 0.035 \mathrm{mmol})$. The mixture was stirred for 32 h at room temp. The mixture was extracted with dichloromethane and the organic phases were washed with saturated aqueous NaHCO_{3} and water, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated under reduced pressure. The residue was purified by TLC [silica gel; hexane-ether $2: 1$)] to give 13 ($1.5 \mathrm{mg}, 47 \%$).

One Pot Cyclization of $\mathbf{8}$ and $\mathbf{5}$ in the Presence of $\mathrm{TiCl}_{4}{ }^{*}$ - Го a solution of $\mathrm{TiCl}_{4}(237 \mathrm{mg}, 1.25 \mathrm{mmol})$ in dry dichloromethane $\left(0.5 \mathrm{~cm}^{3}\right)$, cooled to $-78^{\circ} \mathrm{C}$, was added $8(204 \mathrm{mg}, 0.799 \mathrm{mmol})$ in dichloromethane $\left(1.0 \mathrm{~cm}^{3}\right)$ slowly, followed by $5(120 \mathrm{mg}$, 0.919 mmol) via a syringe. After 3 h at $-78^{\circ} \mathrm{C}$, the mixture was stirred at room temp. for 20 h and then diluted with water and extracted with dichloromethane. The organic phases were washed with saturated aqueous NaHCO_{3} and water, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated under reduced pressure. The residue was purified by chromatography over silica gel eluting with CHCl_{3} to give $9(117 \mathrm{mg}, 42 \%)\left(R_{\mathrm{f}}=0.4\right)$ and $15(34 \mathrm{mg}$, $22 \%)\left(R_{\mathrm{f}}=0.2\right)$.

4-(Trimethylsilyl)bicyclo[3.3.0]oct-3-en-2-one 15 was a pale yellow oil; b.p. $80-90^{\circ} \mathrm{C} / 15 \mathrm{mmHg}$ (Found: C, 67.3; H, 9.2. $\mathrm{C}_{11} \mathrm{H}_{18} \mathrm{OSi}$ requires $\mathrm{C}, 67.98 ; \mathrm{H}, 9.33 \%$); $v_{\text {max }}($ neat $) / \mathrm{cm}^{-1}$ $2958,1705(\mathrm{CO}), 1253$ and $841 ; \delta_{\mathrm{H}}\left(200 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 0.225$ ($9 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}_{3}$), 1.21-1.33 ($2 \mathrm{H}, \mathrm{m}$), $1.53-1.853(4 \mathrm{H}, \mathrm{m}), 2.67$ (1 H , ddd, $J 9.1,5.9$ and $3.0,1-\mathrm{H}), 3.40-3.49(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H})$ and

[^2]$6.29(1 \mathrm{H}, \mathrm{d}, J 1.47,3-\mathrm{H}) ; \delta_{\mathrm{C}}\left(50.1 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)-1.384$ $\left(\mathrm{SiMe}_{3}\right), 24.54,29.83,30.00,50.35,50.76,141.8,186.7$ and 214.2 (C-2); $m / z 195\left(\mathrm{M}^{+}, 100 \%\right), 179(74), 166(69), 151$ (47), 120 (57), 83 (59) and 73 (72) (Found: $\mathrm{M}^{+}, 194.1135$. Calc. for $\mathrm{C}_{11} \mathrm{H}_{18} \mathrm{OSi}$: $M, 194.1127$).

One Pot Cyclization of $\mathbf{8}$ and $\mathbf{5}$ in the Presence of $\mathrm{AgBF}_{4} .^{*}$ To a solution of $\mathrm{AgBF}_{4}(250 \mathrm{mg}, 1.28 \mathrm{mmol})$ in dry $1,2-$ dichloroethane $\left(0.9 \mathrm{~cm}^{3}\right)$ and dichloromethane ($0.6 \mathrm{~cm}^{3}$), cooled to $-50^{\circ} \mathrm{C}$, was added 1-phenylseleno-1-trimethylsilylethene $8(204 \mathrm{mg}, 0.799 \mathrm{mmol})$ slowly, followed by cyclopent-1-enoyl chloride $5(120 \mathrm{mg}, 0.919 \mathrm{mmol})$ via a syringe. After 30 min at $-50^{\circ} \mathrm{C}$, the mixture was allowed to warm to room temp. and stirred for 2 h . The mixture was extracted with dichloromethane and the organic phases were washed with saturated aqueous NaHCO_{3} and water, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated under reduced pressure. The residue was purified by chromatography on silica gel eluting with CHCl_{3} to give 23 $(48 \mathrm{mg}, 24 \%)\left(R_{\mathrm{f}}=0.7\right)$ and $12(19 \mathrm{mg}, 9 \%)\left(R_{\mathrm{f}}=0.3\right) . S e$ Phenyl cyclopent-1-ene-1-carboselenoate 23 was an orange oil; $v_{\text {max }}($ neat $) / \mathrm{cm}^{-1} 2956,1688(\mathrm{CO}), 1613,1578,1476,1439,1154$, 762,738 and $688 ; \delta_{\mathrm{H}}\left(200 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.92-2.08(2 \mathrm{H}, \mathrm{m})$, 2.48-2.60 ($2 \mathrm{H}, \mathrm{m}$), 2.62-2.74 (2 H, m), 6.92-6.97 (1 H, m, 2-H), $7.35-7.42(3 \mathrm{H}, \mathrm{m}, \mathrm{Ph})$ and $7.49-7.56(2 \mathrm{H}, \mathrm{m}, \mathrm{Ph}) ; \delta_{\mathrm{C}}(50.1$ $\left.\mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 23.00,31.24,33.57,126.2,128.8,129.2,136.1$, 144.0, 145.7 and $189.0(\mathrm{CO}) ; m / z 252\left(\mathrm{M}^{+}, 4 \%\right), 250(2), 157$ (5), 95 (100) and 67 (30) (Found: \mathbf{M}^{+}, 252.0017. Calc. for $\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{OSe}: M, 252.0053$).

One Pot Cyclization of $\mathbf{8}$ and 7 in the Presence of TiCl_{4}.*To a solution of $\mathrm{TiCl}_{4}(216 \mathrm{mg}, 1.14 \mathrm{mmol})$ in dry dichloromethane $\left(1.706 \mathrm{~cm}^{3}\right)$, cooled to $-78^{\circ} \mathrm{C}$, was added 8 $(227 \mathrm{mg}, 0.89 \mathrm{mmol})$, followed by crotonoyl chloride $7(119 \mathrm{mg}$, 0.706 mmol) via a syringe. After 40 min at $-78^{\circ} \mathrm{C}$, the mixture was stirred at room temperature overnight. The reaction mixture was diluted with water and extracted with dichloromethane and the organic phases were washed with saturated aqueous NaHCO_{3} and water, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated under reduced pressure. The residue was purified by column chromatography on silica gel eluting with hexane-ether ($4: 1$) to give $16(32 \mathrm{mg}, 17 \%)\left(R_{\mathrm{f}}=0.4\right)$.

4-Methyl-3-(trimethylsilyl)cyclopent-2-en-1-one 16: colourless oil; b.p. $70^{\circ} \mathrm{C} / 23 \mathrm{mmHg}$; $v_{\max }$ (neat) $/ \mathrm{cm}^{-1} 2962,1716$ $(\mathrm{CO}), 1250$ and $839 ; \delta_{\mathrm{H}}\left(200 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 0.232(9 \mathrm{H}$, s, SiMe_{3}), $1.22\left(3 \mathrm{H}, \mathrm{d}, J_{4,4-\mathrm{Me}} 7.3,4-\mathrm{Me}\right), 1.94\left(1 \mathrm{H}, \mathrm{dd}, J_{5,5} 18.8\right.$, $\left.J_{4,5} 2.19,5-\mathrm{H}\right), 2.60\left(1 \mathrm{H}, \mathrm{dd}, J_{5,5} 18.8, J_{4,5} 6.35,5-\mathrm{H}\right), 3.09-3.16$ $(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H})$ and $6.29\left(1 \mathrm{H}, \mathrm{d}, J_{2,4} 1.71,2-\mathrm{H}\right) ; \delta_{\mathrm{C}}(50.1 \mathrm{MHz}$; $\left.\mathrm{CDCl}_{3}\right)-1.46\left(\mathrm{SiMe}_{3}\right), 20.94,39.65,44.15,141.2(\mathrm{C}-2), 188.6$ (C-3) and $210.6(\mathrm{C}-1) ; m / z 168\left(\mathrm{M}^{+}, 40 \%\right), 153$ (34), 125 (25), 83 (75) and 73 (100) (Found: $\mathrm{M}^{+}, 168.0979$. Calc. for $\mathrm{C}_{9} \mathrm{H}_{16} \mathrm{OSi}$: $M, 168.0970$).

Acknowledgements

We are grateful to Prof. I. Murata and Dr. K. Yamamoto (Osaka Univ.) for measurement of mass spectra and elemental analyses.

References

1 W. Dumont, D. Van Ende and A. Krief, Tetrahedron Lett., 1979, 485.
2 For reviews, see: (a) E. W. Colvin, Silicon Reagents in Organic Synthesis, Academic Press, 1988; (b) I. Fleming, Chem. Soc. Rev., 1981, 10, 83; (c) E. W. Colvin, Chem. Soc. Rev., 1978, 7, 15.
3 (a) S. E. Denmark and T. K. Jones, J. Am. Chem. Soc., 1982, 104, 2642; (b) T. K. Jones and S. E. Denmark, Helv. Chim. Acta, 1983, 66, 2377, 2397.
4 S. Yamazaki, M. Hama and S. Yamabe, Tetrahedron Lett., 1990, 31, 2917.

5 (a) P. Magnus and D. Quagliato, J. Org. Chem., 1985, 50, 1621; (b) P. Magnus, D. A. Quagliato and J. C. Huffman, Organometallics, 1982, 1, 1240; (c) P. Magnus and D. A. Quagliato, Organometallics, 1982, 1, 1243.
6 H. J. Reich, W. W. Willis, Jr. and P. D. Clark, J. Org. Chem., 1981, 46, 2775.

7 (a) I. N. Nazarov and I. I. Zaretskaya, J. Gen. Chem. USSR (Engl. Trans.), 1957, 27, 693; (b) I. N. Nazarov and I. I. Zaretskaya, J. Gen. Chem. USSR (Engl. Trans.), 1959, 29, 1532; (c) S. Dev, Indian. Chem. Soc., 1957, 34, 169; (d) E. A. Braude and J. A. Coles, J. Chem. Soc., 1952, 1430; (e) C. W. Shoppee and B. J. A. Cooke, J. Chem. Soc., Perkin Trans. 1, 1973, 1620; (f) F. Cooke, R. Moerck, J. Schwindeman and P. Magnus, J. Org. Chem., 1980, 45, 1046; (g) L. A. Paquette, W. E. Fristad, D. S. Dime and T. R. Bailey, J. Org. Chem., 1980, 45, 3017.
8 H. J. Reich, J. M. Renga and J. E. Trend, Tetrahedron Lett., 1976, 2217.

[^0]: \dagger A similar isomerization was observed in 1-(dimethylamino)-2(phenylseleno)maleate and fumarate. ${ }^{8}$
 \ddagger The assignment of the TMS substituent position for 9 was established by conversion to 15 using $\mathrm{Bu}_{3} \mathrm{SnH}$, AlBN (azoisobutyronitrile) in benzene ($80^{\circ} \mathrm{C}, 1 \mathrm{~h}, 100 \%$ yield).

[^1]: * The one-pot cyclopentenone annulations of 1-(phenylseleno)-1-(trimethylsilyl)ethene 8 and α, β-unsaturated acid chlorides 5-7 in the presence of Lewis acids were also attempted. In general, the one pot reaction was somewhat capricious, and gave poor yields and low selectivity. For example, when a mixture of 8,5 and TiCl_{4} in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $-78^{\circ} \mathrm{C}$, was allowed to warm to room temperature, cyclized products, $9(42 \%)$ and $15(22 \%)$ were obtained. Treatment of 8 and 5 in the presence of AgBF_{4} at room temperature gave 12 (9%) and the seleno ester $23(24 \%)$ as a by-product.

[^2]: * See footnote page 1556.

